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Appendix A Comparing Proposed and Danaher Methods

Danaher et al. (2010) provides one state-of-the-art method for optimal budget allocation of

Internet display ads. Danaher considers a traditional advertising setup, in which costs are

fixed and a small number of websites are considered for advertising purposes. A basic premise

of this method is that the number of web pages viewed by individuals at websites (denoted as

a n by p matrix Z in our context) can be characterized by a multivariate negative binomial

distribution (referred to as MNBD hereafter). In particular Danaher’s method models the

full exposure distribution as follows:

P (X1 = x1, . . . , Xp = xp) (A1)

=

(
p∏
j=1

P (Xj = xj|sj, rj, αj, tj)

)[
1 +

∑
j<k

ωj,kφj(xj)φk(xk) +
∑
j<k<l

ωj,k,lφj(xj)φk(xk)φl(xl)

]

where P (Xj = xj|sj, rj, αj, tj) =
(
xj+rj−1

xj

) ( αj

αj+tjsj

)rj ( tj
αj+tjsj

)xj
, i.e., Xj is modeled using

a Negative Binomial distribution, the φj(xj) terms have a given functional form, 0 ≤ sj ≤
1 corresponds to the share of impressions purchased, tj represents a time interval, and

rj, αj, ωj,k, ωj,k,l are all parameters that are estimated from Z.
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By comparison, our approach models the full exposure distribution as follows:

P (X1 = x1, . . . , Xp = xp|c) =

∫
z

P (X1 = x1, . . . , Xp = xp|c,Z = z)fZ(z)dz

=

∫
z

n∏
j=1

P (Xj = xj|cj, Zj = zj)fZ(z)dz

=

∫
z

n∏
j=1

(
e−γjγ

xj
j

xj!

)
fZ(z)dz

≈ 1

n

n∑
i=1

n∏
j=1

(
e−γijγ

xij
ij

xij!

)
(A2)

where γij = sj(cj)zij. An important difference between our approach and that of Danaher et

al.’s (2010) method is that we do not attempt to model a parametric distribution for fZ(z)

but instead use a sample of individual’s page views among our p websites, which provides

an empirical approximation for fZ(z).

When one wishes to model reach, both methods will then set P (X1 = 0, . . . , Xp = 0).

However, a key distinction between Equation A1 and Equation A2 is that in the latter case

the expression simplifies to 1
n

∑n
i=1 e

−
∑

j γij , while in the former case no such simplification

occurs. This difference between the two methods is the main explanation for why our method

is still computationally feasible for up to thousands of websites, while Danaher’s method is

more suitable for much smaller numbers of websites.

In this appendix, we compare performance of the proposed method with that of Danaher’s

method in small-scale campaigns assuming that the CPM to advertise at each website is

known and fixed. It is also worth noting that, under the fixed costs assumption, the approach

we outline below (as a slight variation of the proposed method discussed in the main paper)

is directly applicable to large-scale nonprogrammatic and programmatic direct display ad

campaigns.

Let cj represent the cost to purchase 1000 impressions. Using the proposed method, we

now solve for optimal budget spent at website j, wj, for j = 1, . . . , p. The total number of

impressions purchased will then be given by 1000wj/cj, where cj is fixed. It can be shown

that our objective function under this setup becomes:

min
w

1

n

n∑
i=1

e−γi subject to
∑
j

wj ≤ B and wj ≥ 0, j = 1, . . . , p, (A3)
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where γij =
zij

τj
cj

1000

wj. Then the algorithm can be run in a similar fashion as in the Method-

ology Section, but now with θij and ηij in Equation 8 as θij =
zij

τjcj/1000
and ηij = θ2ij.

Note that while Danaher et al. (2010) optimizes over share of impressions at a given

website (what we call sj) and we optimize over total budget spent wj here, there is a one-

to-one correspondence between sj and wj as follows: sj =
1000wj

τjcj
. Therefore, we use this

correspondence to compare the performances of these two methods below. Further, because

Danaher et al.’s method assumes a MNBD in the web page matrix, we develop two settings

to test the methods: (1) a simulated data example, where the data is simulated from the

assumed MNBD distribution, and (2) a real data setting, where the data is taken from the

comScore data used in Empirical Investigation Section.

A.1 Comparison using Data Simulated from MNBD

To examine how our method performs under the basic premise of Danaher’s approach, we

first generate the Internet usage matrix Z with 5000 rows (users) and 7 columns (websites),

based on a MNBD with αj and rj, j = 1, ..., 7, the usual parameters associated with a MNBD,

and ωj,j′ , a set of correlation parameters denoting the correlation coefficient in viewership

between websites j and j′. To make our simulation as realistic as possible, we establish

αj, rj, and ωj,j′ as the values from the seven most-visited websites from the December 2011

comScore data. We also use the CPMs provided by comScore’s 2010 Media Metrix (Lipsman,

2010) in this stimulation. Given that Danaher’s method models page views as a MNBD

while we directly use empirically observed page views in the Z matrix without assuming any

underlying distribution, each method has its own definition of the reach function. Thus, to

ensure an unbiased comparison of the two methods, we report the results using a neutral

reach definition. Both methods share a common metric, the probability of being served

the ad at the jth website is sj. Thus we can naturally define a binomial reach function,

1 − 1
n

n∑
i=1

∏
j(1 − sj)zij , for comparison purposes. In what follows, we use this definition of

reach in model comparisons.

Figure A1 shows the reach curves for the average reach estimate for our approach (Pro-

posed Poisson), the Danaher estimate1, and Danaher’s method with all interaction terms

1Since Danaher’s objective function is highly nonconvex, it can find local optima during optimization.
Consequently, we run the optimization with several initialization points and choose the results with the
highest reach for comparisons.
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Figure A1: Performance comparison between the proposed method and Danaher’s using

simulated data (left) and real data (right).

set to zero, at each budget across 100 simulation runs using the binomial definition of reach

(both for this simulated data study on the left and the following real data study on the

right). Finally, we also demonstrate a variant of our Poisson model. Specifically we replace

the Poisson distribution in Equation 3 with a NBD, with the same expected value γj = sjzij,

which corresponds to

P (Xj = 0|Zj = zij, c) = (1 + sj)
−zij , P (Y = 0|c) ≈ 1

n

n∑
i=1

p∏
j=1

(1 + sj)
−zij (A4)

Inserting (A4) into the left hand side of Equation 5 provides a NBD version of our standard

objective function which can be optimized in a similar fashion. We plot the associated reach

estimate using the blue dotted line (Proposed NBD).

As expected, Danaher’s method performs slightly better than our Poisson approach on

the simulated data, because the data is generated from the MNBD as assumed by his model.

However, when using the NBD objective function on the simulated data, we see the pro-

posed NBD method slightly outperforms even Danaher. All three methods here outperform

the No Correlation version of Danaher’s method, since it is the only approach to assume

independence across websites.

The right plot in Figure A1 shows the average reach at each budget across the 100

sample runs using the December 2011 comScore Media Metrix data. Specifically, we use

Internet usage data from the top seven most-visited websites that support Internet display
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advertisements. The data contained 51,093 users who visited one of the seven websites at

least once in December 2011. We fit all methods to 100 randomly chosen user subsets of

size 5,109 (approximately 10% of the population), then calculated reach using the budget

allocations on the remaining 90% holdout data. Again, we use the CPMs as given in comScore

Inc.’s Media Metrix data from May 2010 (Lipsman, 2010). In this scenario, the proposed

Poisson reach estimate slightly outperforms the reach obtained under Danaher’s method.

Presumably this occurs because the real data does not precisely follow an MNBD. Overall,

as seen in the left panel of Figure A1, the two methods yield very similar reach results.

Again, the Danaher No Corr. results are considerably worse than for the other methods,

due to the inherent correlations among the websites in the real data.

One interesting feature here is that the Proposed NBD method slightly outperforms the

Proposed Poisson in both plots of Figure A3. However, this is to be expected, since the reach

measure being used here is the binomial reach (and thus slightly favors the optimization

based on a binomial distribution rather than an exponential). There is one major potential

disadvantage to using the NBD over the Poisson objective function though. Unlike when

using the Poisson distribution for the objective function, the resulting objective function for

the NBD approach is no longer convex so can be harder to globally optimize. As noted

with Danaher’s approach, these criteria can get stuck at local optima and require multiple

initializations to achieve reliable results. As the optimizations under consideration get more

and more complex, this optima issue could potentially become problematic.

Appendix B Algorithm Details, Convergence, and Efficiency

B.1 Intuition Behind the Sparsity of Websites Chosen Using Our Method

It is not obvious why Equation 5 should produce a sparse solution set, just as it is not

obvious that the L1 penalty in the Lasso will have the same effect. Figure A2, taken from

James et al. (2013), provides additional intuition. The blue diamond in the left hand

plot represents the constraint region for the standard Lasso, while the ellipses represent the

objective function that is being minimized (in this case sum of squares). All points on an

ellipse represent equal sum of squares, with larger ellipses corresponding to higher sum of

squares. The goal then is to find a point within the shaded region which has smallest possible
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

Figure A2: Geometric explanation of the Lasso’s ability to produce sparse solutions.

sum of squares. The fact that the constraint region has sharp points on the axes means that

the point which minimizes the criterion, while still lying within the constraint, often falls

on one of these axes. For example, in the above plot the ellipse which first touches the

shaded region corresponds to β1 = 0. By comparison the right hand plot corresponds to

ridge regression where the constraint set has no points and hence the solution does not fall

on the axes. For our method, while the criterion to be optimized is not sum of squares, the

form of the constraint set is similar to that for the Lasso (it corresponds to the positive part

of the shaded region), so our approach also produces sparse solutions.

B.2 Algorithm

Our objective function of Equation 7 in the Methodology Section can be written in statistical

form using an `1 penalty:

f(w) = g(w) + ‖w‖1, (A5)

where g(w) = 1
n

∑n
i=1 e

−γi is a differentiable convex function of w, and ‖w‖1 =
∑p

j=1 |wj|
is a separable convex but not differentiable function. It has been shown in Luo and Tseng

(1992) that a coordinate descent algorithm, which iteratively minimizes the objective as a
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function of one coordinate at a time, will achieve a global minimum for functions of the form

in Equation A5. Thus convergence using coordinate descent is guaranteed for our objective

function, since it is in the form specified by Luo and Tseng.

Because no closed-form solution exists for Equation 7, we employ a Taylor approximation

to Equation A5, resulting in Equation 8. To minimize Equation 8 over wj, with all wk (k 6= j)

fixed, we first compute the partial derivative with respect to wj which is given by

n∑
i=1

[ηij(wj − w̃j)− θij] + λ (A6)

for wj > 0. Setting Equation A6 equal to zero gives Equation 9.

We can also use Equation A6 to find a starting point for our algorithm, i.e., the λ value

corresponding to B = 0. To do this, we employ the same procedure for calculating Hj as

used in Equation 9. Hj measures whether our algorithm has set a coefficient to drop below

zero. We can use this same procedure to initialize the first λ at which B = 0. In particular,

we first set w̃j = 0 for all j = 1, . . . , p, which corresponds to zero budget. Then, we calculate

Hj for each website and set our initial λ value to maxHj, with j = 1, . . . , p. To calculate

increasing budgets, we use this value as λmax and incrementally decrease λ by steps. The

step size and number of steps are both parameters of the algorithm and are thus specified

by the researcher depending on desired granularity and maximum budget. For example, for

the McRib case study we used 500 steps at a step size of 0.01.

B.3 Convexity

To demonstrate that 1
n

∑
i e
−γi is convex, we compute the Hessian of partial second deriva-

tives, H, and show that the p by p matrix is positive semi-definite. First, standard calcula-

tions show that H = 1
n

∑
iHi where the (j, k)th component of Hi is given by

Hijk = e−γi ×

(zijs
′
j)

2 − zijs′′j j = k

zijziks
′
js
′
k j 6= k

.

Second, to demonstrate that H is positive semi-definite we need to show that xTHx ≥ 0 for

all x. But

xTHx = xT
1

n

∑
i

Hix =
1

n

∑
i

xTHix =
e−γi

n

∑
i

(∑
j

xjzijs
′
j

)2

−
∑
j

x2jzijs
′′
j


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This term is guaranteed to be non-negative provided s′′j is negative for all j. Hence, a sufficient

condition for our objective function to be convex is that the sj functions are concave.

Appendix C NCL Campaign: Unobserved Consumer Heterogeneity

In this appendix we provide a demonstration of how our method may be used to incorporate

unobserved consumer heterogeneity. In addition to observed heterogeneity such as demo-

graphics and/or past browsing behavior, the extent to which a consumer pays attention to

a particular Internet display ad might also depend on additional heterogeneous factors that

are unobservable to campaign managers. For example, a consumer who had a recent bad

travel experience is more likely to ignore an ad by NCL compared to someone who is enthu-

siastically planning for his/her next family vacation. Such unobserved heterogeneity can be

incorporated into our framework by modeling γi as coming from a random distribution with

E(γi) =
∑

j sjzij. Specifically, if γi is a random variable then

P (Y = 0|c) = Eγ (P (Y = 0|c, γ)) = Eγ(e
−γ|c) ≈ 1

n

n∑
i=1

Eγi(e
−γi |c). (A7)

This last term in Equation A7 is in fact the moment generating function (mgf) for γi eval-

uated at −1. Hence, the expression can be easily computed for a variety of possible distri-

butions on γi. For example, we could model γi ∼ N

(
µv
∑

j sjzij, σ
2
v

(∑
j sjzij

)2)
, where

µv = E(vi), σ
2
v = V ar(vi). Here vi is a random variable representing the amount of attention

consumer i pays to the ad when it is served on a given website. Then, using the Gaussian

mgf, P (Y = 0|c) can be approximated by

1

n

n∑
i=1

e−(µv−σ2
v

∑
j sjzij/2)

∑
j sjzij . (A8)

Although a bit more complicated than Equation 5, Equation A8 can be optimized by up-

dating the values for θij and ηij in Equation 8. Thus, optimizing reach with the additional

unobserved heterogeneity in γi would proceed in an almost identical fashion to our main

model.

Nevertheless, this extension requires campaign managers to estimate values for µv and

σ2
v . Note that, for µv = 1 and σ2

v = 0, Equation A8 is identical to Equation 5 in our main

model. In such cases, all consumers are assumed to pay full attention to the ad once it
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is served. In practice, as discussed above, it is possible that consumers are heterogeneous

with regard to the amount of attention they devote to a particular ad. To capture such

unobserved consumer heterogeneity, campaign managers can collect additional data from

auxiliary studies such as the increasingly popular eye-tracking study (e.g., Wedel and Pieters

2000; Aribarg et al. 2010; Wedel and Pieters 2012). For example, campaign managers can

post the ad on test websites and use eye-tracking devices to measure the duration at which

each consumer fixates on the ad. With observed values of fixation duration over a random

sample of n∗ consumers, campaign managers can easily estimate values of µv and σ2
v . For

example, if we consider that a consumer pays full attention to an ad after 100 milliseconds

of eye fixation (Wedel and Pieters, 2012), we can record the number of milliseconds each

consumer fixates on the ad (di) and compute vi = min
(

1, di
dmax

)
, with dmax = 100. Using

natural sample statistics, we can then estimate µv and σ2
v as:

µ̂v =
1

n∗

n∗∑
i=1

vi, σ̂2
v =

1

n∗ − 1

n∗∑
i=1

(vi − µ̂v)2 .

We provide a demonstration of this extension below.

For this example, we again consider the subset of users who visited at least one aggregate

travel website in January 2011 (6,431 users). We rerun our method following the details

in the Methodology Section, where we assume values of µv and σv are known to the NCL

campaign manager, presumably through an eye-tracking study. For the purposes of this

example, we use µv = 0.5 and σv = 0.15. We modify both the proposed method and the

benchmark greedy method to account for these additional variables.

Figure A3 shows the results of this scenario, with the modified proposed and benchmark

greedy methods, keeping the equal and Danaher allocations unchanged. We consider two

situations. In the left-hand plot of Figure A3, σv and µv are known to advertisers, and

we incorporate those values into the optimization directly using the methodology from the

Methodology Section. As this left-hand plot shows, there is a clear advantage for the pro-

posed method. In contrast, the plot on the right demonstrates the case where µv and σv

are still 0.5 and 0.15, respectively, but this information is not available to advertisers. In

this case, advertisers could run the method without adjusting for µ and σ, i.e. running

the optimization with µv = 1 and σv = 0. The estimates used in the right-hand figure are

thus calculated from the original optimization, but reach is calculated using the underlying

9



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Budget (in millions)

H
e

te
ro

g
e

n
o

u
s
 R

e
a

c
h

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Budget (in millions)

H
e

te
ro

g
e

n
o

u
s
 R

e
a

c
h

Proposed

Greedy

Equal

Danaher

Figure A3: Overall reach when true unobserved heterogeneity values are incorporated into

the optimization (left) and when optimization does not incorporate unobserved heterogeneity

(right).

“truth” of µv = 0.5 and σv = 0.15 to show what happens when the optimizations are run

without accounting for the unobserved heterogeneity.

As the right-hand plot of Figure A3 shows, the proposed method still performs better than

the other three methods, though it sacrifices much of the advantage it gained by correctly

incorporating the heterogeneity information in the left-hand plot. In particular, the estimates

given by Danaher’s method on the eight travel websites actually perform better than the

greedy method and only slightly behind the proposed method. Having accurate heterogeneity

estimates can greatly assist advertisers in adjusting their allocations to accommodate for any

unobserved consumer heterogeneity. However, our example shows that, even if NCL fails

to account for heterogeneity, the proposed method still outperforms the other benchmark

methods.
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Appendix D Properties of Method as n Approaches Infinity

D.1 p fixed

First we consider the setting where p is fixed but n → ∞. Let cm represent the value of c

that maximizes reach over the entire population subject to a specific budget B i.e.

cm = arg min
c
E[e−

∑
j sj(cj)Zj ] such that

p∑
j=1

cjsjτj ≤ B, and cj ≥ 0, j = 1, . . . , p,

while c∗n is the corresponding value that maximizes reach over our sample, Z. Then our goal

is to prove that, as n→∞,

1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij → E[e−

∑
j sj(cmj)Zj ] a.s. (A9)

First we select a dense, but finite, grid over c such that all points in the grid satisfy the

constraints in Equation 1, and for any value of c, there exists a point c′ on the grid such

that

|sj(cj)− sj(c′j)| < ε/p (A10)

for all j = 1, . . . , p, where ε > 0 is a suitably small value. Note that this is guaranteed to

be possible as long as sj is continuous with |s′j| < K < ∞ for all j. This is a reasonable

assumption since sj is bounded between 0 and 1. We also include cm as one of the points

on the grid. Then by the strong law of large numbers, ∃N1 such that ∀n > N1,∣∣∣∣∣ 1n
n∑
i=1

e−
∑

j sj(c
′
j)Zij − Ee−

∑
j sj(c

′
j)Zj

∣∣∣∣∣ < ε, a.s. (A11)

for every c′ on our grid. Let M = maxj E[Zj]. Then, also by the strong law of large numbers,

∃N2 such that ∀n > N2,
1

n

n∑
i=1

Zij < M + ε (A12)

for all j a.s.

Consider
1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − Ee−

∑
j sj(cmj)Zj = A+B + C

where A = 1
n

∑
i e
−

∑
j sj(c

∗
nj)Zij − 1

n

∑
i e
−

∑
j sj(c

′
j)Zij , B = 1

n

∑
i e
−

∑
j sj(c

′
j)Zij − Ee−

∑
j sj(c

′
j)Zj ,

C = Ee−
∑

j sj(c
′
j)Zj − Ee−

∑
j sj(cmj)Zj , and c′ is a point on our grid. Then clearly, by the
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definition of cm, for any c′, C ≥ 0. Similarly by Equation A11 for any c′, B > −ε a.s. for

n > N1. Finally note that, for n > N2,

|A| ≤ 1

n

n∑
i=1

∣∣∣e−∑
j sj(c

∗
nj)Zij − e−

∑
j sj(c

′
j)Zij

∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣
p∑
j=1

(
sj(c

∗
nj)Zij − sj(c′j)Zij

)∣∣∣∣∣ (since de−x/dx < 1 for x > 0)

≤ 1

n

p∑
j=1

n∑
i=1

∣∣sj(c∗nj)Zij − sj(c′j)Zij∣∣
=

1

n

p∑
j=1

n∑
i=1

∣∣sj(c∗nj)− sj(c′j)∣∣Zij
≤ ε

p

p∑
j=1

1

n

n∑
i=1

Zij (for appropriately chosen c′ by Equation A10)

≤ ε

p

p∑
j=1

(M + ε) = ε(M + ε) a.s. (by Equation A12)

Hence, A+B + C ≥ −ε(M + ε)− ε+ 0 = −ε2. Thus, for n > min(N1, N2),

1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij > Ee−

∑
j sj(cmj)Zj − ε2 a.s. (A13)

Now consider
1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − Ee−

∑
j sj(cmj)Zj = D + E

whereD = 1
n

∑
i e
−

∑
j sj(c

∗
nj)Zij− 1

n

∑
i e
−

∑
j sj(cmj)Zij and E = 1

n

∑
i e
−

∑
j sj(cmj)Zij−Ee−

∑
j sj(cmj)Zj .

Then, by the definition of c∗n, D < 0. Also, by Equation A11, E < ε for n > N1 a.s. Thus

1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij < Ee−

∑
j sj(cmj)Zj + ε a.s. (A14)

Thus, by Equation A13 and Equation A14, for n > min(N1, N2),∣∣∣∣∣ 1n
n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − Ee−

∑
j sj(cmj)Zj

∣∣∣∣∣ < ε3 a.s.

where ε3 = max(ε, ε2). Hence, for suitably small ε these two quantities are arbitrarily close

a.s. so Equation A9 is proved.
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D.2 p increasing with n

Now we consider the setting where p and n both approach infinity. We make the following

assumptions, as n→∞:

p→∞ (A15)

p

log n
→ 0 (A16)

E[Zj] < M <∞, j = 1, 2, . . . (A17)

|s′j| < K <∞, j = 1, 2, . . . (A18)

and as p→∞
E[e−

∑
j sj(cmj)Zj ]→ r where r is a constant. (A19)

Note that Equation A16 assumes that, while p grows to infinity, it grows slower than n. This

assumption matches the data we observe in practice where the number of websites (p) under

consideration may be very large, in the thousands, but the number of potential customers

(n) is even larger, in the hundreds of thousands or millions.

Our goal is to prove that, as n→∞,

1

n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij → r a.s. (A20)

First we note that, by Equation A19, for any ε > 0,
∣∣E[e−

∑
j sj(cmj)Zj ]− r

∣∣ < ε for large

enough p. Thus, for large p,∣∣∣∣∣ 1n
n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − r

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − E[e−

∑
j sj(cmj)Zj ]

∣∣∣∣∣+ ε.

We can use essentially the same arguments as in the previous section to show that, for

any fixed p,
∣∣∣ 1n∑n

i=1 e
−

∑
j sj(c

∗
nj)Zij − E[e−

∑
j sj(cmj)Zj ]

∣∣∣→ 0 a.s. The key point to observe is

that quantities such as cm, c
∗
n, c
′,Z, N1, N2 as well as the grid over c are now functions of p.

However, Equation A16 guarantees that for any fixed p, we can grow n large enough that

Equations A10, A11, and A12 all hold.

First, note that Equation A18 guarantees Equation A10 will hold. Second, for Equation

A12 to hold, we only need that n grows faster than p (since we need to bound p different

values of Z̄j). This is certainly guaranteed by Equation A16. Finally, the most challenging

part is to show that Equation A11 holds, since the bound must hold for all points in the grid,
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and the grid could grow at an exponential rate in p. However, the log n term in Equation

A16 accounts for this possibility so n can still grow large enough to ensure Equation A11

holds.

Once we observe that, for any fixed p, we can grow n large enough so that Equations A10,

A11, and A12 all hold, the argument in the previous section can be applied to show that, for

n > min(N1(p), N2(p)),
∣∣∣ 1n∑n

i=1 e
−

∑
j sj(c

∗
nj)Zij − E[e−

∑
j sj(cmj)Zj ]

∣∣∣ < δ for some small δ > 0.

Hence, for large enough p, we can always find a corresponding n > min(N1(p), N2(p)) such

that ∣∣∣∣∣ 1n
n∑
i=1

e−
∑

j sj(c
∗
nj)Zij − r

∣∣∣∣∣ < ε+ δ

Thus our reach estimate is guaranteed to converge to the population reach as n and p

approach infinity.

Appendix E Illustration of Correlation in Website Viewership

In this appendix, we provide both analytical and empirical illustrations of how the proposed

method incorporates correlations into the objective function. Our approach models reach as

1 − EZ
(∏

j Gj

)
, where Gj = e−sjZj and Zj is the number of page views a random person

has at website j. In the case p = 2 this expression reduces to

Reach = 1− EZ (G1G2) = 1− EZ(G1)EZ(G2)− Cov(G1, G2)

Note that 1 − EZ(G1)EZ(G2) is the reach if Z1 and Z2 are independent, so our objective

function for reach can be seen as modeling reach as a term assuming independence plus an

adjustment for the covariance between G1 and G2. One important observation is that the

adjustment is in terms of the covariance between G1 and G2 rather than between Z1 and Z2.

If the covariance in viewership between sites is positive, then reach is lower relative to the

independent case and vice versa if covariance is negative. This result matches our intuition,

since we are likely to reach fewer unique customers when two sites are positively correlated

because the same people tend to visit both sites. Conceptually this idea extends to the case

p > 2. For example, for p = 3 the expression becomes

Reach = 1−EZ (G1G2G3) = 1−EZ(G1)EZ(G2)EZ(G3)−Cov(G1, G2G3)−EG1Cov(G2, G3),
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Figure A4: Illustration of budget allocation with varying correlations in website viewership.

which also corresponds to the reach under independence less a reduction if the covariances

of G1, G2 and G3 are positive. However, the reach becomes harder to express for larger p

since it involves terms of order p so cannot be expressed using a single covariance term.

We can also empirically illustrate the effects of correlation on budget allocation by con-

sidering a case with p = 3 websites, all generated from the same distribution with the same

cost. However, the viewership for websites 1 and 2 has a measurable correlation ranging

from 0.0 (fully independent) to 1.0 (perfect positive correlation), and website 3’s viewership

is generated entirely independently of the other two websites (correlation of 0).

Figure A4 shows the change in budget allocation across the three websites as the corre-

lation between websites 1 and 2 changes. When the correlation between websites 1 and 2

is zero, all three websites are independent. In this case, the algorithm allocates one-third

of the budget to each of the three websites, since no website has a clear advantage over the

other two. As the correlation between websites 1 and 2 increases, the algorithm gradually

allocates more budget to website 3 and splits the remaining budget among websites 1 and

2. When these two websites become perfectly correlated, the algorithm divides the budget

in half, allocating one half to website 3 and the other half across websites 1 and 2.
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Appendix F Change in Reach as a function of B

Let Q(w) = 1
n

∑n
i=1 e

−γi where γi =
∑

j sj(wj)zij and reach equals 1 − Q. Then ∂Q
∂wj

=

− 1
n

∑n
i=1 e

−γis′j(wj)zij. At any solution point w1, . . . , wp will be chosen such that
∑

j wj = B.

Hence, a ∆ increase in B will be associated with a ∆ increase in
∑

j wj. In particular we

will select the wj associated with the largest value of − ∂Q
∂wj

as this will give the largest

instantaneous increase in reach. Hence, a ∆ increase in B will be associated with a

∆ max
j

1

n

n∑
i=1

e−γis′j(wj)zij

increase in reach. In practice for larger values of B there may be several websites whose

derivatives are all equal to this maximum value. In that setting the ∆ increase in B would

be shared among all these websites. However, this would not impact the overall change in

reach since we would simply apportion this derivative among several websites. Since all the

derivatives would be equal, the conclusion is unaffected.

Appendix G Complete Enumeration

One approach to maximize reach involves computing a complete enumeration of all possible

budget allocations. In theory, by enumerating these possible allocations and calculating their

subsequent reach measures, we are guaranteed to find the global optimal solution. However,

in practice this is computationally prohibitive, especially for a large number of websites and

high budgets.

In what follows, we attempt to verify results of the proposed method using complete

enumeration over the eight aggregate travel websites identified in the Norwegian Cruise

Lines (NCL) Section. This gives us a reasonably small set of websites over which we can run

the enumeration. In addition, for feasibility we choose a moderate budget of $50,000. Lastly,

we run the complete enumeration over the 6,431 users who visited at least one of the eight

aggregate travel websites in January 2011, again as used in the NCL Section. Ideally we

would compute a complete enumeration of all possible combinations of budget points across

all eight websites. However, testing all combinations of a budget allocation of $50,000 on

eight websites in increments of $1 would involve on the order of 1037 total calculations, which
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even at one million calculations a second would require 1023 years to compute. Therefore,

we employ a modified iterative enumeration approach as follows.

We first initialize the method with 10 evenly-spaced budget points (for $50,000, this

represents an incremental increase of $5000 per budget point), examining all possible budget

allocations which total $50,000. Then, after finding the optimal solution at this coarsest

level, we create a finer grid of 10 budget points around the solution, with five points above

the solution and five below. The grid size of these budget increments are first done as 10%

of the budget allocated to a given website, then 5%, then 2.5%, etc. For example, if website

j was allocated $1,000, the first iteration would have budget increments of $100 (e.g. ten

budget points ranging from wj = 500 to wj = 1500). For the same budget of $1,000, the

second iteration would have grid size of $50, and the third iteration would have grid size of

$25. This ultimately results in a more precise solution around the values initially chosen by

the enumeration. We repeat this process until the overall reach achieved does not change by

more than 0.1%, or 0.001.

We then compare the reach performance of the proposed method and complete enumer-

ation using binomial reach from Appendix A.1, i.e. 1 − 1
n

n∑
i=1

∏
j(1 − sj)zij where sj is the

probability that the ad is served on the jth website. We use binomial reach in this com-

parison because the reach definition under our approach would favor the proposed method.

Under this comparison, the enumeration method obtains a reach higher by only 0.3%. The

mean absolute deviation (MAD) between the enumeration optimal schedule and the proposed

optimal schedule is $935.

We further carry out an alternative enumeration method using an initialization around

the solution given by the proposed method on the eight aggregate sites. Here, instead of

initializing the enumeration with an evenly-spaced grid of budget points, we create an initial

grid from the solution provided by the proposed method. Again, we run this procedure

iteratively. As described above, we start with a coarse grid around the proposed method’s

solution (i.e., 10% of the budget allocated to the website) and then narrowing the grid around

the best allocation (i.e., then 5%, 2.5%, etc.) until the reach achieved does not change by

more than 0.1%. Under this comparison, the enumeration method achieves a reach higher

by 0.2% and the MAD of the budget allocations between the enumeration and the proposed

method is $33.5.
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Lastly, we enumerate all possible budget allocations which total $50,000 for three aggre-

gate travel websites. While impractical for eight websites, a complete enumeration over a

fine grid is much more reasonable for a problem of this size. Here, we employ a grid size of

$5 per budget point, meaning we test 10,000 budget points per website. Within this prob-

lem setting, the MAD of budget allocations reduce to $11. And the complete enumeration

obtains a reach higher by 0.2%.

Appendix H Comparing Proposed and Benchmark Greedy Methods

Here we explore performance comparisons between the proposed method and the benchmark

Greedy algorithm when websites vary in 1) their relative attractivenesses with respect to

cost and/or total visitation; and 2) the degree of correlation in their viewership. Ceteris

paribus, a website is more attractive to an advertiser when it entails low cost and/or high

visitation. Recall that a key difference between the proposed and the benchmark greedy

methods is that the latter will not adjust funds allocated to previously chosen websites once a

subsequent website has entered the allocation. When the websites are clearly distinguishable,

in not only the order in which they should be chosen but also how much budget should be

allocated, incremental gains from freely adjusting budgets across sites should be relatively

small. Therefore, we expect similar performance of the two methods under such scenarios. In

contrast, when the relative attractivenesses of websites are similar, given diminishing returns

to additional funds spent on each website, the proposed method can benefit a great deal from

iteratively adjusting budgets across sites to achieve the highest possible marginal return. In

this setting we expect the proposed method to outperform the benchmark method.

Additionally, the comparitive performance between the two methods can also be impacted

by viewership correlation across websites. When websites exhibit overlap in viewership, the

proposed method may find it advantageous to allocate more or less funds to previously

chosen websites in attempts to maximize reach under a given budget. In contrast, because

the benchmark greedy algorithm lacks the flexibility of adjusting budget once a website has

already been chosen, we expect that a complex correlation structure can ultimately hurt the

benchmark greedy algorithm’s performance.

As an illustration we consider an example of three websites with visitation generated in

the same manner as the simulated websites in the Simulation Studies Section. For simplicity,
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Figure A5: Comparison in varying Cost and Correlation settings: proposed vs. benchmark

greedy

visitation at all three websites is drawn from the same distribution. Therefore, the relative

attractiveness of the websites is gauged by their different cost curves, which are generated

in the same manner as described in our main paper. We tested a total of four scenarios:

1) distinct attractiveness, no viewership correlation; 2) similar attractiveness, no viewership

correlation; 3) distinct attractiveness, correlated viewership; and 4) similar attractiveness,

correlated viewership.

In the distinct attractiveness condition, the average CPM’s of the first, second and third

websites are respectively $2.50, $5.00, and $7.50. In the similar attractiveness condition,

the three websites have average CPMs of $4.75, $5.00, and $5.25, respectively. Within

each condition, we further generated two different data matrices, one with no viewership

correlation and the other with viewership correlations of ρ = 0.5 across the three websites.

Figure A5 shows the relative performance of the two methods under these four conditions.

All results are consistent with our expectations. The top left plot, corresponding to distinct

attractiveness and no viewership correlation, shows the closest performance comparison be-

tween the two methods, while the bottom right plot, corresponding to similar attractiveness
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and high viewership correlation, shows the greatest performance difference. The remaining

two figures illustrate more moderate reductions in performance for the benchmark Greedy

method.

To summarize, while the two methods are both computationally efficient, from a market-

ing perspective, the proposed method generally outperforms the benchmark greedy algorithm

to a practically significant degree, with the magnitude of gains varying based on the relative

attractivenesses of websites and the degree of viewership correlation. Nevertheless, we do

note that since the benchmark greedy algorithm does not have to reallocate across websites,

it necessarily provides a faster solution. This gain in computation time may prove preferable

in situations where speed is prioritized over performance maximization or where compara-

tively small gains are expected due to websites being distinct and uncorrelated, as in the

upper left scenario of Figure A5. However, this scenario is unlikely to occur in practice.

Appendix I Supplementary Information on Empirical Results

Figure 6 in the main text shows clear differences among the methods in terms of performance.

These reach values are the averages across all 100 runs with different 10% subsets of the data.

It is worth noting these results are remarkably stable, even with only 10% of the total data

used for any given run. Table A1 compares the reach achieved by the proposed method

and the benchmark greedy method at the runs corresponding to the given percentiles (that

is, the 50th percentile here is the median reach achieved by the method) at three example

budgets: $50,000, $100,000, and $250,000. The proposed method consistently outperforms

the benchmark greedy method, even when comparing the 5th percentile of the proposed

method to the 95th percentile of the benchmark greedy method. Further, these curves do not

overlap for any of the 100 runs. That is, the largest reach achieved by the benchmark greedy

method at any budget is always lower than the smallest reach achieved by the proposed

method at any of the 100 runs. We further verify this using 99.9% intervals for the mean

reach achieved by both the proposed method and the benchmark greedy algorithm; there is

no overlap between the intervals, even at a confidence level of 99.9%.

Table A2 provides an overview of correlation in viewership among the 16 website groups

in the McRib example, both within groups and among groups. Within group correlations in

the table (diagonal elements) are calculated by taking the mean of all absolute correlations
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$50,000 $100,000 $250,000

Percentile Proposed Benchmark Proposed Benchmark Proposed Benchmark

5th 0.0679 0.0361 0.1149 0.0698 0.2023 0.1444

25th 0.0684 0.0363 0.1158 0.0702 0.2045 0.1458

50th 0.0685 0.0366 0.1162 0.0705 0.2053 0.1463

75th 0.0688 0.0368 0.1165 0.0709 0.2060 0.1470

95th 0.0691 0.0369 0.1171 0.0712 0.2072 0.1475

Table A1: Reach achieved by percentile across 100 runs at budgets of $50,000, $100,000,

and $250,000 for both the proposed and benchmark greedy methods.

between websites in a particular group. For example, the Newspaper category shows moder-

ately high average correlation in viewership among websites with a value of 0.48. In contrast,

there is not much correlation in viewership among websites in the E-mail category, only 0.01

on average. The off-diagonal elements of Table A2 show the maximum absolute correlation

between each pair of groups. This is calculated by taking the maximum correlation between

two websites from the respective groups. For example, there is a high correlation of 0.96 be-

tween Newspaper and Portal sites. In contrast, there is a low correlation between Filesharing

and E-mail sites, only 0.03.
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